
Towards Practical Fabrication Stage Attacks
Using Interrupt-Resilient Hardware Trojans
Athanasios Moschos

Georgia Institute of Technology
Atlanta, Georgia, USA
amoschos@gatech.edu

Fabian Monrose
Georgia Institute of Technology

Atlanta, Georgia, USA
fabian@ece.gatech.edu

Angelos D. Keromytis
Georgia Institute of Technology

Atlanta, Georgia, USA
angelos@gatech.edu

Abstract—We introduce a new type of hardware trojans called
interrupt-resilient trojans (IRTs). Our work is motivated by the
observation that hardware trojan attacks on CPUs, even under
favorable attack scenarios (e.g., an attacker with local system
access), are affected by unpredictability due to non-deterministic
context switching events. These events can lead to race conditions
between trigger signals and the CPU events targeted by the trojan
payloads (i.e., a memory access), thus affecting the reliability
of the attacks. This work shows that interrupt-resilient trojans
can guarantee the reliable implementation of sophisticated trojan
attacks through punctual delivery of the triggering signal un-
der diverse context-switching conditions. We successfully utilize
IRTs in different attack scenarios against a Linux-capable CPU
design and showcase their resilience against context-switching
events. More importantly, we show that IRT designs allow for
seamless integration during fabrication stage attacks. We evaluate
interrupt-resilient designs on a high-speed, tape-out ready RISC-
V layout in a 28nm commercial technology process, adding an
average overhead delay of only 20 picoseconds, while leaving
the sign-off characteristics of the layout intact. In doing so, we
challenge the common wisdom regarding the low flexibility of late
supply chain stages (e.g., fabrication) for the insertion of powerful
trojans. To promote further research on microprocessor trojans,
we open-source IRTs and their supporting software logic.

Index Terms—Hardware Trojans, Computer Architecture,
Very Large Scale Integration, Integrated Circuits, RISC-V

I. INTRODUCTION

Hardware trojans (HTs) have become a topic of increased
attention, due to the covertness of their nature and their po-
tential for malicious exploitation of globalized supply chains.
In their most clandestine form, hardware trojans are forged by
intentional modifications made directly to the physical layout
of integrated circuits (ICs). Their stealthy nature has sparked
great interest in the offensive hardware security domain [18],
with existing research shedding light on the attackers’ powers
at different stages of the chips’ design cycle. Indeed, the
large body of offensive research [3, 4, 10, 11, 17, 19] has
advanced our collective understanding of different hardware
trojan design capabilities, culminating in new lines of inquiry
in the implementation of practical trojan attacks [3, 4, 19].

To date, much of that research [18] has focused on the
stealthiness aspect of trojan attacks, where the number of
trojan gates and nets partaking in the malicious modification
is the key metric used to characterize a trojan’s stealthi-
ness [7, 11, 17, 19]. Existing literature on trojan attacks
against CPUs [3, 4, 6, 10] often assumes threat models

with attackers that are able to execute malicious binaries and
surreptitiously excite trojans hidden in the microarchitecture to
deliver their payloads. An often overlooked factor however, is
how the interplay between software and hardware in modern
microprocessor systems can pose challenges for the correct
execution of a hardware trojan attack. Specifically, modern
CPUs are complex finite state machines that handle numerous
unpredictable, asynchronous events (e.g., interrupts). Thus, it
is not rare for a CPU state change to happen between the trojan
triggering and the delivery of the effect. If that change is not
properly accommodated for, it can lead to undesirable side
effects (i.e., a crash). Occurrence of unexplained system be-
haviors can raise attention and lead to further device scrutiny.
We therefore consider attack reliability to be as equally as
important as a trojan’s size when it comes to stealthiness.

Despite existing efforts on CPU-based trojan designs [7, 11,
17, 19], there has been a lack of research on how the subtleties
of asynchronous events can undermine attack stealthiness.
Motivated by this observation, we shed light on the spectrum
of context switching (CS) events that can occur during HT
attacks against CPUs. Moreover, from the stand-point of a
fabrication stage attacker, we examine two CS-resilient trojan
designs that can be efficiently implemented in tape-out ready
layouts. We make the following contributions:

‚ We introduce interrupt-resilient trojans (IRTs), that tackle
context-switching events and manage the reliable delivery
of the time-critical trigger signal.

‚ We show IRTs’ attack performance against CPUs under
different context switching scenarios.

‚ We identify components in modern microarchitectures
that can host IRTs during fabrication stage attacks.

‚ We emulate a fabrication stage attacker and insert IRTs
in a tape-out ready CPU layout.

Overall, we bring attention to practical challenges in hard-
ware trojan attack design and revisit longstanding assumptions
about the lack of flexibility in fabrication stage attacks [9].

II. BACKGROUND AND RELATED WORK

In computer security parlance, an HT consists of a trigger
and a payload. The trigger circuit is tasked with monitoring
for predefined conditions and initiating the payload delivery
when these conditions are met. Trigger circuits that are easy
to excite at the attacker’s behest but also remain hidden during

1

Time
TASK NHANDLING

SOFTWARETASK 1 TASK 1HANDLING
SOFTWARE TASK N HANDLING

SOFTWARE

Logic

IRT-1

Logic
& FSM

IRT-2

TIME
QUOTA

ENABLE
+

EXERCISE
TROJAN

EXERCISE
TROJAN

EXERCISE
+

DISABLE
TROJAN

OPERATIONAL TIME OF THE ATTACK

Trigger
Signal

Trigger
Signal

TASK
SCHEDULER

TASKS TO BE EXECUTED

QUOTA EXPIRE

PREEMPTION

INTERRUPT

Operating System

Fig. 1: Time slicing of the CPU’s execution time during a hardware trojan attack.

S1
Enable
State

Trigger = ‘1’

ON = ‘X’
OFF = ‘0’

ON = ‘X’
OFF = ‘1’

Trigger = ‘0’

Always-Ready Trigger FSM
ON and OFF
are signals

generated by the
IRT-2 logic and

control the FSM.
‘X’ = don’t care

state
S0

Disable
State

Trigger = ‘0’

ON = ‘1’
OFF = ‘X’

Trigger = ‘1’

ON = ‘0’
OFF = ‘X’

Fig. 2: The IRT-2 FSM.

the testing phase or normal chip operation, are considered
highly reliable. The second vital component, the payload
circuit, is responsible for modifying the host system’s native
behavior. However, a trojan is not an organic part of the
CPU’s design and only stages prior to fabrication [9] provide
smooth microarchitectural integration, whether through high-
level specification adjustments or low-level RTL logic mod-
ifications at the more lenient front-end and back-end stages.
Central to hardware trojan attacks is the effective but covert
communication with the trojan, through a handling software.
Discontinuities in the software and hardware collaboration
cycle can make a trojan more easily discoverable.

Contemporary Attacks: State of the art research on CPU
HT attacks covers different insertion stages (design vs fabri-
cation) and access levels (local vs remote). For the most part,
the size of the HT implementations — namely, the number of
trojan gates and signals that are necessary to implement the
trojan — is often used to justify arguments about stealthiness.
Unfortunately, the operational aspect of a HT is usually
considered orthogonal to its stealthiness and often considered
out of the scope of [7, 8, 14], which lack a discussion about the
conditions under which their HTs operate. For the studies that
do consider operational issues (e.g., [3, 4, 6, 11, 13, 19]), they
usually lack an in-depth discussion of how the intricacies of
the CPU’s operational reality can undermine the effectiveness
of their proposed attacks. Indeed, several approaches simply
assume that attackers are readily able to execute malicious
code on the target without interruption.

Challenges in Executing a Hardware Trojan Attack:
Modern OSes segregate virtual memory into user space (e.g.,
software applications) and kernel space (e.g., privileged OS
kernel, device drivers) in order to provide memory and
hardware protection from malicious or erroneous software
behavior. Furthermore, to improve performance, modern mi-
croprocessors interface with peripheral modules and allow
for OS multitasking. The latter is accomplished through the
operation of context switching, where the state of a process
or thread is saved on interrupt and then later restored once its
execution is resumed. Multitasking, interrupt handling, user
and kernel mode switching are the primal reasons behind

context switching events. Undoubtedly, the assumption that
attacks will execute without interruption is unrealistic.

Design stage attacks allow for a smooth HT integration
with the microarchitecture, avoiding the challenges of context
switching. Thus far, only De et al. [3] have even acknowledged
the challenges posed by context switching during a hardware
trojan attack, and Tsoutsos and Maniatakos [17] have assumed
the presence of context switching events. Specifically, they
show how CS events are leveraged by the HT to provide
to a malicious user process access to unauthorized memory.
However, their implementation considers a specific attack
without guarantees on its correct execution.

Regardless of the assumptions made regarding the attacker’s
access vector on the system, the handling software must deal
with unpredictable interruptions from context switching. It
is precisely this uncertainty that we aim to tackle head on.
Specifically, we argue that any realistic hardware trojan attack
must accommodate for non-deterministic context switching
events, generated by the continuous interleaving of interrupts
and applications in the execution chain of a microprocessor.

III. THREAT MODEL

Within the security community, fabrication stage attacks are
considered to be particularly restrictive [3, 9, 17, 18, 19] in
terms of the attackers’ powers (e.g., limited design informa-
tion, rigidness in sign-off layout modifications). We question
this longstanding assumption, and instead show that sophisti-
cated HTs can indeed be implemented efficiently at this phase
and lead to attacks equally as powerful as those enabled by
insertion of HTs in design phases prior to fabrication [9].

Specifically, we adopt the threat model of a fabrication-stage
attack, where a malicious entity inside a foundry gains access
to the chip’s GDSII file (e.g., the input file for fabrication)
to introduce an IRT. We assume that the design process up
to the GDSII generation is completely trusted. The malicious
alterations take place inside the foundry by an attacker with
access to necessary tools (e.g., design automation software,
process design kit, cells and libraries of the victim layout).
Modern chips have areas occupied by filler cells for DFM (de-
sign for manufacturing) purposes, so we assume the attacker

2

will leverage those “open” spaces to add attack-gates, as in
relevant literature [3, 6, 8, 13, 17, 19].

A typical practice of design houses is to provide abstract in-
formation to foundries about the functionality of the chip under
fabrication. A malicious entity can combine this information
with public domain data about the design house (e.g., clients)
and deduce the chip’s instruction set architecture (ISA). By
extracting the layout’s gate-level netlist [15, 19], the attacker
can search for suitable victim flip-flops or routed signals either
by executing various test-benches in HDL simulators [19] or
by reconstructing the high-level functionality of modules [12].
Taken as a whole, we show that an adversary experienced in
IC design can successfully insert an IRT.

On the operational aspect, we assume the attacker is able to
interface with the modified CPU after its on field deployment
and deploy handling software similarly to the local access
scenarios considered in Section II. Afterwards, the attacker
can exercise the HT’s capabilities, leveraging the reliability
offered by the interrupt resilient triggering mechanism.

IV. OUR APPROACH

The goal of a HT attack against a CPU is to reliably
deliver the payload, while remaining unaffected by the normal
microprocessor operation. For illustrative purposes, consider
the scenario proposed by [19] where an attacker performs a
privilege escalation attack to elevate the rights of a malicious
process. For that, the trojan payload must flip the state
of the CPU’s privilege bits to elevate the execution rights
of the handling software. In this scenario, the operational
time of the handling process is mostly divided between the
time spent to activate the capacitive based trigger and that
spent on leveraging the HT’s payload. In practice though,
the operational period is not contiguous but rather a chain
of time slices due to interleaved multitasking and kernel
switching phenomena, as seen in Figure 1. Consequently, the
noise induced in the attack’s operational time is significant
and unpredictable. What’s more, a return to the the handling
process does not guarantee the state of the privilege bits
(payload) and the code location execution is resumed from.
The outcome is that the CPU operational reality translates to
uncertainty about the trigger signal state, which can jeopardize
the trojan’s stealthiness. Thus, we view the trigger signal as
the most time sensitive aspect of hardware trojan designs.

A. Trigger Circuit Designs

To directly confront the aforementioned challenges, we
introduce interrupt-resilient trojans or IRTs, that overcome
the random context switching events through their unique CS-
aware designs. In what follows, we characterize IRTs by their
trigger mechanism and describe our design choice rationales.

1) Selectively-Ready Trigger (IRT-1): During context
switching, the operating system is responsible for saving the
state of the currently running process and restoring that of the
next to be executed. We leverage the microarchitectural effects
of this OS procedure to create IRT-1, a trigger mechanism
implemented inside modules experiencing this non-stop cycle

CPU
Modules

Instruction
Influenced

CS
Support

Adders 1 ✓ ✗
Dividers ✓ ✗

Multipliers ✓ ✗
Program Counter ✓ ✓

Floating Point Reg. ✓ ✓
General Purpose Reg. 1 ✓ ✓

TABLE I: Suitable CPU host modules for
IRT-1 and IRT-2.

Host Module
Requirements IRT-1 IRT-2

CS Support ✓ ✗
Inst. Influenced ✓ ✓

Multi-bit Signals ✓2 ✓2

TABLE II: Host module
requirements for IRTs.

of state saves and restores. The requirement for an IRT-1 host
module is that it should (i) participate in the state restore
procedure upon the CPU’s switch to the handling process, and
(ii) be influenced through non-privileged instructions of the
handling software for attack controllability.

2) Always-Ready Trigger (IRT-2): As an alternative, we
follow an “always-ready” strategy where the IRT-2 mechanism
constantly delivers the trigger signal throughout the opera-
tional time of the attack. As for the IRT-2 host module, the
only prerequisite is that it is comprised of hardware logic that
can be readily influenced through non-privileged instructions.
Hence, an IRT-2 can “infect” a larger set of microarchitecture
modules, as evident in Table I. That said, this enhanced
capability comes at the expense of the extra support logic (see
Figure 2) that is required to maintain the trigger’s ON state.

B. Selecting Signals for the Trigger Mechanism

In practice, settling on a way to implement a trigger’s
circuitry is non-trivial. To date, two approaches have been
explored in the academic literature.

The first utilizes so-called rare signals (e.g., signals with
low toggling rate probability) for the creation of trigger
circuits [6, 8, 11, 19]. The conjecture is that strongly biased
signals decrease the probability of an inadvertent trojan trig-
gering. To find these rare triggers, relevant research [6, 8]
suggests signal profiling using representative benchmarks for
CPU workloads [19]. Inevitably, the rare signal selection is
biased by the benchmark used, and a shift in the workload
can alter the rareness of signals that are relied upon.

The second approach [10, 13] involves monitoring general
purpose hardware for the existence of specific trigger values.
The rationale here is that accidental triggering can be reduced
by increasing the number of bits [6] or the trigger sequences
used. Conventional IRT host modules that can provide multi-
bit signals for the trigger generation are shown in Table I.
Importantly, this method does not require a priori knowl-
edge of likely CPU workloads. Therefore, trojan activation
is more streamlined, as long as the handling software can
have immediate influence on the trigger host module. For our
implementations, we choose the triggering values approach
because it is more controllable and less onerous to implement
during fabrication. A summary of all the IRT host module re-
quirements is outlined in Table II for the reader’s convenience.

1The examples we used for our evaluation in Section V.
2If triggering values are selected as the triggering approach.

3

C. Tackling Silicon Reality Constraints

Irrespective of the triggering approach, the fabrication stage
imposes the same practical constraints on the attacker, namely:

i) The trigger and the payload host modules might be
spatially separated on the layout, thereby requiring the
time critical trigger signal to travel a significant distance.
This in turn can lead to race conditions between the
trigger signal and CPU events targeted by the payload.

ii) The area or routing congestion around host modules
of interest might be high, leaving limited space for the
placement and routing of trigger gates and nets.

iii) The signals of interest might belong in the circuit’s
critical path, with further utilization of them in the HT
design, running the risk of generating timing violations.

With respect to the spatial locality challenge, the IRT-2
solution is immune due to its “always-ready” design. However,
the IRT-1 solution is susceptible, as the trigger signal needs to
travel to the payload each time the handling software resumes
execution in the pipeline. To accommodate for that, the trigger
should be treated as a multi-cycle path, meaning a data path
sampled at a lower rate than that of the clock signal. Thus,
multiple clock cycles are available for a valid value to show
up at the end of such a path. Attackers can offer this option,
by leveraging time expensive CPU events, to mask the time
needed for the arrival of the trigger signal. Our proof of
concept in Section V-A, uses the page table walking event
to mask the arrival time of the IRT-1 trigger signal. In our
evaluation, we attach the IRTs on a set of general purpose
registers and the operands of an adder because they cover all
of the requirements outlined in Table II.

V. EVALUATION

To demonstrate the fact that IR-based trojans can operate
in the presence of diverse context switching events while also
overcoming the aforementioned silicon challenges, we couple
our trigger designs with a payload that can undermine the
integrity and availability of a CPU and attack the CVA6 [20]
RISC-V microarchitecture. Specifically, the payload violates
the separation mandated by the operating system between
privileged and non-privileged areas of a CPU’s memory.
To that end, we target the exception generation mechanism
within the memory management unit (MMU). The payload
suppresses the exception signal generated for faulty store
memory accesses that try to alter addresses whose privilege
rights do not concur with the privilege state of the processor.
To do so, we interfere with the User-mode bit (U-bit) of the
page table entry (PTE) under access, and present a modified
U-bit version to the exception handling module.

First, we perform an integrity attack that modifies arbi-
trary kernel space addresses selected by the attacker. These
addresses might belong to different kernel modules running
on the CPU and support a diverse set of software security
mechanisms (i.e., access control policies, packet filtering).
To demonstrate the generalization of this attack, we perform
an experiment in a controlled setting and target a custom

made Linux kernel module (LKM). Our LKM allocates a
certain set of addresses inside the kernel address space and
the attacker uses the handling process to modify the contents
of the allocated addresses with attacker-specific values. We
implement this attack with both IRT-1 and IRT-2 trojans.

Second, we perform an attack that affects availability. In this
experiment, we explicitly modify addresses containing kernel
structures of type “task struct”. A “task struct” element is a
process descriptor containing information about a respective
process and belongs to the kernel’s task list. In this particular
attack we overwrite the addresses following the “init task”
structure of the init task and cause a kernel panic.

A. Resilience to Interrupts

In what follows, we evaluate our IRTs under both kernel
context switching and multitasking scenarios. We run our
experiments on a Genessys 2 FPGA board using a CVA6
design with integrated IRTs.

Kernel Context Switching: Abiding by the requirements
of Table II, we implement IRT-1 inside CVA6’s register file
and attach it on the nets of two 64-bit general purpose registers
(GPRs). Loading a specific 128-bit sequence in this register
set instantiates the HT. A context switch out of the handling
process temporarily removes the sequence from the register
set until the handling software resumes execution. Overwrit-
ing of this sequence translates to deactivation of the trojan.
Undoubtedly, this constant transition between ON and OFF
states can lead to race conditions between the payload delivery
and the targeted CPU events (i.e., a faulty store memory
access). Due to the fact that the trigger signal might travel
a long distance to reach the payload (e.g., because of spatial
separation on the layout), the trigger must be treated as a multi-
cycle path, as discussed in Section IV-C. To offer the extra
clock cycles for the trigger propagation, we take advantage
of the page table walking event. As the targeted LKM virtual
addresses are not part of the handling software’s address space,
a page table walk is invoked with each overwrite to recover
the physical addresses. This procedure requires multiple clock
cycles to finish, providing sufficient time for the trigger signal
to propagate and setup (re-enable) the payload. The payload
can then suppress the exception signal generated by the MMU
with every faulty store memory access in the kernel address
space. Our experiments show that despite the multiple kernel
context switching incidents, the IRT-1 trojan was able to
successfully overwrite differing amounts of data in the kernel.

Process Context Switching: For the IRT-2 implementation
to satisfy the requirements of Table II, we use the integer adder
of CVA6’s arithmetic logic unit (ALU) as the trojan host. We
attach IRT-2 on the nets of the two 64-bit input operands.
Starting the attack, we influence the adder’s operands with a
specific set of activation values, that force the FSM of Figure 2
to state S1 and enable the trigger. The trigger remains as such
until the attack’s end, where a specific set of de-activation
values disable the trigger (FSM switches to S0).

Next, we consider the prevalence of interrupts (due to
multitasking) that can occur while a HT attack is underway.

4

0.00 0.01 0.02 0.03
Load Delta (pf)

0

5

10

15

20

25
Nu

m
be

r o
f N

et
s

mean load=0.0068 pf

IRT-1 Load Deltas @ post-ECO stage (pf)
Circuit

payload
trigger

(a) Load (pf) overhead from IRT-1.

0.00 0.01 0.02 0.03 0.04
Load Delta (pf)

0

5

10

15

20

25

30

35

Nu
m

be
r o

f N
et

s

mean load=0.0062 pf

IRT-2 Load Deltas @ post-ECO stage (pf)
Circuit

payload
trigger

(b) Load (pf) overhead from IRT-2.

0.00 0.02 0.04 0.06 0.08 0.10
Delay Delta (ns)

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f N
et

s

mean delay=0.0205 ns

IRT-1 Delay Deltas @ post-ECO stage (ns)
Circuit

payload
trigger

(c) Delay (ns) overhead from IRT-1.

0.00 0.02 0.04 0.06 0.08
Delay Delta (ns)

0

5

10

15

20

25

30

Nu
m

be
r o

f N
et

s

mean delay=0.0104 ns

IRT-2 Delay Deltas @ post-ECO stage (ns)
Circuit

payload
trigger

(d) Delay (ns) overhead from IRT-2.

Fig. 3: Load (pf) and delay (ns) overhead on original layout nets caused by IRT-1 and IRT-2.
HARDWARE TROJAN CHARACTERISTICS PHYSICAL IMPLEMENTATION RESULTS

Target Trigger
Trigger

Bits
Trigger

Host
Payload

Host
Seq.
Cells

Comb.
Cells

Conn.
Nets 3

Frequency (MHz)
before

Density (%)
before | after

Total Power (µW)
before | after

Slack (ps)
before | after

Violations
after

CVA6 IRT-1 128 Set of GPRs MMU 50 4 55 600 75.32 | 76.537 241.31 | 241.44 0.00 | 0.00 0
IRT-2 128 ALU Adder MMU 64 6 70 600 75.32 | 76.539 241.31 | 244.70 0.00 | 0.00 0

TABLE III: Physical implementation results showing the impact of IR-based HTs on a CVA6 layout after insertion.

Fig. 4: Tape-out ready layout depicting both HT designs.

To emulate the multitasking operation, we interleave our HT
handling software with the execution of other user level
processes and the kernel. After, setting the IRT-2 generated
trigger to an ‘always-ready’ mode (S1 state), we execute a
program that randomly interleaves the handling software with
the execution of a general computing performance benchmark
(e.g., Dhrystone). For an average of 11 KBs of overwritten
kernel data, we witness a mean of 83 context switching events.
Despite the heavy interrupt activity, the overwrite of arbitrary
LKM addresses concludes successfully.

B. Reassessing Fabrication Stage Flexibility

To support our assertion that IRTs provide a pathway for
fabrication stage attacks, we implement in a commercial 28nm

3This is the number of the interconnects between the HT gates.

process technology, the CVA6 tape-out ready layout (sign-off
timings and no manufacturing violations) shown in Figure 4,
to insert our trojans and measure their overall impact on the
layout performance. The CVA6 layout represents the GDSII
file received at the foundry from a trusted design house and
is both high speed (clock frequency of 600MHz) and high
density (ą75% core utilization).

Our trigger circuit implementations use the strategy sug-
gested by Su et al. [16], wherein they analyze different logic
gate connection patterns and record those with very low
transition probability on their output. We use as cores of IRT-
1 and IRT-2 circuits, the recommended connection patterns
xAND Ñ NANDy, xNAND Ñ NORy. This selection leads to a very
low (inadvertent) activation probability and thus, enhances the
HTs’ stealthiness. We couple IRT-1 and IRT-2 with the payload
of Section V and insert them in two separate CVA6 layouts.

Our threat model considers an adversary that gains access
on the finalized layout at the foundry and performs an IRT
insertion in the open areas of the layout. To emulate the
experience and expertise of a skilled adversary attempting a
manual IRT insertion we use the pre-mask ECO flow that P&R
tools provide, since ECOs (i) keep the original layout intact by
swapping only filler cells with attack gates and (ii) deteriorate
marginally the layout timings during routing of attack nets.

An important concern for the adversary is the coupling
capacitance inserted from the HT wiring. The use of ECOs
naturally minimizes any such impact. For a manual insertion,
we argue that the small number of IRT gates and wires in
Table III helps keeping the inserted coupling capacitance to
minimum. Besides, coupling capacitance is a well studied
topic in the microelectronics community [5], with reduction
techniques that attackers can utilize (e.g., wire sizing, wire
spacing, adding repeaters, metal layer jogging). Thus, our use
of ECOs resembles a realistic manual HT insertion from a
knowledgeable adversary. After the HT insertion, we perform
sign-off static timing analysis and DRC checks to verify that

5

the initial fabrication standards are unaffected. The impact of
IR-based HTs on the CVA6 layout is summarized in Table III.
The discrepancy in the number of attack cells between the
two IRTs is attributed to the extra support logic of IRT-2
(Figure 2) and the repeater cells of the further away placed
IRT-1 (Figure 4). Our results are comparable to those of Hepp
et al. [8]. In particular, despite the austere critical path of
CVA6’s layout (0ns vs 15ns slack for PULPino in [8]), IRTs do
not introduce any timing violations (unlike PULPino’s case).

To further assess the feasibility of fabrication stage IRTs,
we compute the capacitive load and time delay overheads
(Figures 3-a, 3-b and Figures 3-c, 3-d) on the original nets that
IRTs’ attach to (GPR’s and adder operands). The average load
added on this layout and technology process is 6.8fF for IRT-1
and 6.2fF for IRT-2, which yields an average extra delay on the
nets of 20ps and 10ps respectively. This observation suggests
that IRTs can target very high frequency CPU layouts (e.g., a
20ps overhead is only 3.4% of the original 1.7GHz clock cycle
in [20]). Overall, our measurements show that IRT designs are
minimalistic enough for fabrication stage attacks.

Lastly, we note that the CVA6 microarchitecture [20] was
designed with a flip-flop-based register file. This design choice
allows using the nets coming out of the flip-flops for the
implementation of IRT-1. A different practice involves the
use of SRAM-based register files, wherein IRT-1’s structure is
unsuitable. However this limitation does not detract from the
generality of IRT attacks, in the same way that the existence
of a single-bit register for privilege escalation in the OR1200
microarchitecture [2] does not detract from the generality of
the A2 trojan attacks [19]. Moreover, attackers can target other
general purpose modules of Table I.

VI. CONCLUSIONS

In this work, we show how context switching events can
hinder the successful execution of HT attacks against CPUs.
To counter that threat, we introduce the concept of Interrupt
Resilient Trojans (IRTs) that can withstand non-deterministic
context switching events while reliably delivering payloads.
By showing that IRTs can be efficiently integrated inside tape-
out ready layouts, we demonstrate that fabrication stage attacks
can indeed be quite flexible. To promote research in this area,
we make our implementation publicly availabile [1].

REFERENCES

[1] Interrupt Resilient Hardware Trojans. https://github.com/
0ena/riscv-hw-trojans.

[2] Openrisc 1200. https://github.com/openrisc/or1200.
[3] A. De, M. N. I. Khan, K. Nagarajan, and S. Ghosh. Hart-

bleed: Using hardware trojans for data leakage exploits.
IEEE Trans. on Very Large Scale Integ. Systems, 2020.

[4] K. Dharsee and J. Criswell. Jinn: Hijacking safe pro-
grams with trojans. In USENIX Security Symposium,
2023.

[5] M. Elgamel and M. Bayoumi. Interconnect noise analysis
and optimization in deep submicron technology. IEEE
Circuits and Systems Magazine, 2003.

[6] V. Gohil, H. Guo, S. Patnaik, and J. Rajendran. Attrition:
Attacking static hardware trojan detection techniques us-
ing reinforcement learning. In ACM SIGSAC Conference
on Computer and Communications Security, 2022.

[7] A. Hepp and G. Sigl. Tapeout of a RISC-V crypto
chip with hardware trojans: a case-study on trojan design
and pre-silicon detectability. In Computing Frontiers
Conference, 2021.

[8] A. Hepp, T. Perez, S. Pagliarini, and G. Sigl. A pragmatic
methodology for blind hardware trojan insertion in final-
ized layouts. In IEEE/ACM International Conference on
Computer-Aided Design, 2022.

[9] N. Jacob, D. Merli, J. Heyszl, and G. Sigl. Hardware
trojans: current challenges and approaches. IET Comput.
Digit. Tech., 2014.

[10] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang,
and Y. Zhou. Designing and implementing malicious
hardware. In USENIX Workshop on Large-Scale Exploits
and Emergent Threats, 2008.

[11] C. Kison, O. M. Awad, M. Fyrbiak, and C. Paar. Security
implications of intentional capacitive crosstalk. IEEE
Trans. Inf. Forensics Secur., 2019.

[12] T. Meade, S. Zhang, and Y. Jin. Netlist reverse engineer-
ing for high-level functionality reconstruction. In Asia
and South Pacific Design Automation Conference, 2016.

[13] A. Moschos, K. Valakuzhy, and A. D. Keromytis. On
the feasibility of remotely triggered automotive hardware
trojans. In Int. Conference on Electrical, Computer,
Communications and Mechatronics Engineering, 2022.

[14] S. Parvin, M. Goli, F. S. Torres, and R. Drechsler.
Trojan-D2: Post-Layout Design and Detection of Stealthy
Hardware Trojans - A RISC-V Case Study. In Asia and
South Pacific Design Automation Conference, 2023.

[15] R. S. Rajarathnam, Y. Lin, Y. Jin, and D. Z. Pan. Regds:
A reverse engineering framework from gdsii to gate-level
netlist. In IEEE International Symposium on Hardware
Oriented Security and Trust, 2020.

[16] Y. Su, H. Shen, R. Lu, and Y. Ye. A stealthy hardware
trojan design and corresponding detection method. In
IEEE Int. Symposium on Circuits and Systems, 2021.

[17] N. G. Tsoutsos and M. Maniatakos. Fabrication attacks:
Zero-overhead malicious modifications enabling modern
microprocessor privilege escalation. IEEE Trans. Emerg.
Top. Comput., 2014.

[18] M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill. Ten
years of hardware trojans: a survey from the attacker’s
perspective. IET Comput. Digit. Tech., 2020.

[19] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester.
A2: Analog malicious hardware. In IEEE Symposium on
Security and Privacy, 2016.

[20] F. Zaruba and L. Benini. The cost of application-
class processing: Energy and performance analysis of a
linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi
technology. IEEE Trans. on Very Large Scale Integ.
Systems, 2019.

6

